PEARLRIVERCENTRALWAT MSEH WATER SUPPLY PAGE C 0. 07 MAIDE RECEIVED-WATER SUPPLY 2011 AUG - 1 PM 4: 01 BUREAU OF PUBLIC WATER SUPPLY CALENDAR YEAR 2010 CONSUMER CONFIDENCE REPORT CERTIFICATION FORM OOO CT The Federal Safe Drinking Water Act requires each community public water system to develop and distribute a consumer confidence report (CCR) to its customers each year. Depending on the population served by the public water system, this CCR must be mailed to the customers, published in a newspaper of local circulation, or provided to the customers upon request. Please Answer the Following Questions Regarding the Consumer Confidence Report Customers were informed of availability of CCR by: (Attack capy of publications, water bill or wiker) Advertisement in local paper On water bills Other Mai Date customers were informed: 07/38/11 CCR was distributed by mail or other direct delivery. Specify other direct delivery methods: Date Malled/Distributed: 07/28/11 CCR was published in local newspaper. (Attach copy of published CCR or proof of publication) Name of Newspaper: Date Published: CCR was posted in public places. (Attach list of locations) Date Posted: / / CCR was posted on a publicly accessible internet site at the address: www._ CERTIFICATION -4 I hereby certify that a consomer confidence report (CCR) has been distributed to the customers of this public water system in the form and manner identified above. I further certify that the information included in this CCR is true and correct and is consistent with the water quality monitoring data provided to the public water system officials by the Mississippi State Department of Healthy Bureau of Public Water Supply. Manager Mail Completed Form to: Bureau of Public Water Supply/P.O. Box 1700/Jackson, MS 39215 Phone: 601-576-7518 # CONSUMER CONFIDENCE REPORT PEARL RIVER CENTRAL WATER ASSOCIATION PWS ID# 550005 2010 ### Is my water safe? Last year your tap water met all U.S. Environmental Protection Agency (EPA) and state drinking water health standards. Local Water vigilantly safeguards its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard. ## Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). ## Where does my water come from? We serve our customers from 5 wells that tap into the Upper Pascagoula aquifer. ## Source water assessment and its availability Our source water assessment has been completed. Our wells are LOWER in terms of susceptibility to contamination, for a copy of the report please contact our office at 601-7983103. For more information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's drinking water hotline at 1-800-426-4791. ## Why are there contaminants in my drinking water? Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining scuvities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for comaminants in bottled water which must provide the same protection for public health. #### How can I get involved? If you have any questions or concerns, please contact Larry copling at 601-798-3103. We want our customers to be informed about their water quality. If you would like to learn more, please attend any of regular scheduled meetings. Monthly meetings are held at 2:00pm on the fourth Tuesday of each month at our offices located: 17 White Chapel Rd., Carriere. The board of directors and your water department crew appreciate people calling in to n otify us of problems they may be having with their water Re: no water, low pressure, leak sightings, and bad smells or tastes. Our certified operators police the system as much as is possible, however, it is impossible to be in all areas at once. Your contributions in our efforts to maintain a water system of this size are extremely important in providing a safe continuos water supply. #### Additional Information for Lead If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. PEARL RIVER CENTRAL WATER ASSOCIATION is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sirting for several hours, you can minimize the potential for lead 9 exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. ## Water Quality Data Table In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table. | Contaminants | MCLG
or
MRDLG | TT, or | Water | Low | Mgi. | Date | Violation | Турісэі. Source | |---|---------------------|-----------------------------------|------------------------------|--------|--------------|--|---------------------|---| | propriectante & Dis
Tecroje convincion | nice sant B | &Broilee
dr ac ialfries | le "A.
Hofyñ <i>g</i> isi | nteca) | it is he | in de la grande | ija
Siguatrotist | kidrobiak samunyaandi) | | Haloacetic Acids
(HAA5) (ppb) | NA | 60 | 5.4 | NA | | 2007 | No | By-product of drinking water
chlorination | | TTHMs [Total
Trihalomethanes]
(ppb) | NA | 80 | 1.89 | NA | | 2010 | No | By-product of drinking water
disinfection | | Chlorine (as Cl2)
(ppm) | ·s | 4 | 1.14 | 0.5 | 1,14 | 2010 | No | Water additive used to control nucrobes | | Indizanić Costanii | anty | | | | 147 | | Mar single | | | Antimony (ppb) | 6 | 6 | 0.5 | NA | | 2010 | No | Discharge from petroleum
refinerus; fire retardants;
ceramics; electronics; solder;
test addition. | | Arseniz (ppb) | 0 | 10 | 0.5 | NA | | 2010 | No | Erosion of natural deposits;
Runoff from orchards; Runoff
from glass and electronics
production wastes | | Barium (ppm) | 2 | 2 | 0.00529 | 0.001 | 0.005
291 | 2010 | ,yo | Discharge of drilling wastes
Discharge from metal
refineries, Erosion of natural
deposits | | Beryllium (ppb) | 4 | 4 | 0,5 | 0,5 | 0.5 | 2010 | No | Discharge from meral
refineries and coal-burning
factories. Discharge from
electrical, aerospace, and
defense industries | |-------------------------------|-----|-----|-------|-----|-------|------|----|---| | Cadmium (ppb) | 5 | 5 | 0.5 | 0,5 | 0.5 | 2010 | No | Corresion of galvanized pipes;
Erosion of natural deposits;
Discharge from metal
rafinences; runoff from waste
batteries and paints | | Chromium (ppb) | 100 | 100 | 0,564 | 0.5 | 0.364 | 2010 | No | Discharge from sect and pulp
mills; Erosion of natural
deposits | | Cyanide (as Free Cn)
(ppb) | 200 | 200 | 15 | 15 | 15 | 2010 | No | Discharge from plastic and
fertilizer factories, Discharge
from steel/metal factories | Range Fluoride (ppm) đ 0.538 0.218 0.538 2010 Erosion of natural deposits; Water additive No which promotes strong teath; Discharge from fertilizer and aluminum factories Erosion of natural deposits; No 0.5 0.5 2010 Mercury [Inorganic] Discharge from refineries and (ppb) factories, Runoff from landfills; Runoff from croptand Runoff from fertilizer use; No 2010 0.2 0.20.2 10 10 Nitrate [measured as Leaching from septic tanks, Nitrogen) (ppm) sewage; Erosion of natural deposits Runoff from fertilizer use: Mo 0.05 2010 0.05 0.03 Nitrite [measured as 1 Leaching from septic tanks, sewage. Eroston of natural Nitrogen] (ppm) deposits Discharge from petroleum and 2010 No 50 2.5 2.5 2.5 Selenium (ppb) 50 metal refineries, Erosion of natural deposits; Discharge from mines Discharge from electronics, No 2010 0.5 MA Thallium (ppb) 0.5 glass, and Leaching from ore processing sites; drug factories Radinarity of Castanit and 0.114 0.973 2010 Erosion of natural deposits 0,973 15 Alpha emitters 0 (pĈl/L) Erosion of natural deposits 30 0.379 0.016 0.279 2010 No () Uranium (ug/L) 1.34 2010 No Erosion of natural deposits 5 1.34 Radium (combined Û 0.144226/228) (pCi/L) Velisile Organic Contabinanti 88 , high the state of Halland His Discharge from extile 2010 70 MA 1,2,4 0,5 finishing factories Trichlorobenzene (dqq) Discharge from industrial 2010 No cis-1,2 70 0.5 NA chemical factories Dichloroethylene (ppb) Discharge from petroleum 0.0005 NA. 2010 10 10 Xylenea (ppm) iactories; Discharge from chemical factories Nο Discharge from 4 0.5 NA 2010 Dichloromethane Ò oharmaceutical and chemical (ppb) factories Discharge from industrial 600 0.5 NΑ 2010 No o-Dichtorobensene 600 chemical factories (ppb) Discharge from industrial 2010 0.5 NA No p-Dichlorobenzene 75 75 chemical factories (pph) | | | | | | | OF STREET, SQUARE, SALES | war war American ballates on a conserved. | Annual of State St | |----------------------|---|--|-----|-----|---|--------------------------|--|--| | | | ************************************** | | | | 2010 | No | Leaching from PVC piping. | | Vinyl Chloride (ppb) | 0 | 2 | 0.5 | NA. | | 2010 | 140 | Discharge from plastics | | tary: Grounds (FF) | | l | ł | | | | | | | 1 | | 1 | į | | | | 1 | factories | | 1 | | ļ | | | l | | | | | 1 | | į | 1 | 1 | | | The same of sa | | | | | | L | | | | | | | 1,1Dichlorothylene | 7 | 7 | 0.5 | VA | | 2010 | No | Discl
Facto | narge from chemical | |--|------|---------|-----------------|------|-------------|-------------------|-------------------|----------------|--| | trans-1,2
Dichotoroethylene
(ppb) | 100 | 100 | 0.5 | NA | | 2010 | No | Dis
che | charge from industrial import factories | | 1,2-Dichloroethane
(ppb) | 0 | 5 | 0.5 | NA | | 2010 | No | | charge from moustrial
mical factories | | 1,1,1-Trichloroethane
(ppb) | 200 | 200 | 0.5 | NΑ | | 2010 | No | de | charge from metal
greasing sites and other
tories | | Carbon Tetrachioride
(ppb) | O | 5 | 0.5 | ΝA | | 2010 | No | pla | scharge from chemical
ints and other industrial
civities | | 1,2-Dichloropropans
(ppb) | 0 | 5 | 0,3 | NA | | 2910 | N | | scharge from industrial
emical factories | | Trichloroethylene
(ppb) | O. | - 5 | 0,5 | NA | | 2010 | И | de | scharge from metal
greasing sites and other
ctories | | 1,1,2-Trichloroethane
(ppb) | 3 | 5 | 0.5 | NA. | | 2010 | N | | scharge from industria!
emical factories | | Tetrachioroethylene
(ppb) | 0 | 5 | 0.5 | NA | | 2010 | Ŋ | | scharge from factories and
y cleaners | | Benzene (ppb) | 0 | 5 | 0.5 | N.A. | | 2010 | N | L | ischarge from factories:
eaching from gas storage
nks and landfills | | Ethylbenzene (ppb) | 700 | 700 | 0.5 | NA | | 2010 | N | | ischarge from petroleum
finerics | | Styrene (ppb) | 100 | (00) | 0.5 | NA | | 2010 | N | p | ischarge from rubber and
astic factones; Leaching
om landfills | | Toluene (ppm) | 1 | l | 0.0005 | NA | 1 | 2010 | N | | lischarge from petrolewn
lotories | | Contaminants | MCLG | AL. | Your Water | | nple
ate | # Sam
Exceedi: | ples
ag All | | Typical Source | | Danishmale Canestoni | | in Yele | l
Stationals | | | | | | en a samuel ye ye gelik de | | Copper - action level
at consumer taps
(ppm) | | 1.3 | 0.001 | 1 | 010 | 0 | 1 | No
· | Corrosion of household
plumbing systems; Erosion
of natural deposits | | Lead - action level at
consumer taps (ppb) | 1 | 15 | 0.002 | 21 | 010 | Ö | J. K. M. P. (**** | No | Corrosion of household
plumbing systems; Exosion
of natural deposits | | UniteDescriptions | | |-------------------|---| | Term | Definition | | ug/L | ug/L: Number of micrograms of substance in one liter of water | | ppm | ppm. parts per million, or milligrams per liter (mg/L) | | ppb | ροβ: parts per billion, or micrograms per lite: (μg/L) | | pCNT. | pCi/L: picocuries per liter (a measure of radioactivity) | | NA. | NA: not applicable | ND ND: Not detected | | AND ADMINISTRATION OF THE PROPERTY PROP | | |--|--|--| | The same of sa | | | | | · · · · · · · · · · · · · · · · · · · | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | THE RESERVE AND THE PROPERTY OF O | | | | 2,000 | ND · Maniparine and washings but recommended | | | 1 (1)(| NR: Monitoring not required, but recommended. | | | 1 """ | The state of s | | ## PEARLRIVERCENTRALWAT | ipariant Dilinking Water Definitions
Term | Definition | |--|---| | MCLG | MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. | | MCL | MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCL3 are set as close to the MCLGs as feasible using the best available treatment technology. | | TT | TT: Treatment Technique. A required process intended to reduce the level of a contaminant in drinking water. | | AL | AL: Action Level: The concentration of a contaminant which, if exceeded miggers treatment or other requirements which a water system must follow. | | Variances and Exemptions | Variances and Exemptions: State or EPA permission not to meet an IMCL or a treatment technique under certain conditions | | MRDLG . | MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | MRDL | MRDL. Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence the addition of a disinfectant is necessary for control of microbial contaminents. | | MNR | MNR: Monitored Not Regulated | | MPL | MPL: State Assigned Maximum Permissible Level | | For more information please weather | | Contact Name: Larry Copling Address: P.O. Box 222 McNeill, MS 39457 Phone: 601-798-3130 601-798-3130 E-Mail: prowater@chartematemet.com